Stack Durability on Hydrogen and Reformate

2004 Hydrogen and Fuel Cells Merit Review Meeting Philadelphia Pa, May 24-27

Rod Borup Los Alamos National Laboratory

Michael Inbody

Susan Pacheco

Troy Semelsberger

John Davey

Dennis Guidry

Jose Tafoya

David Wood

Jian Xie

Kirk Weisbrod

Fernando Garzon

Francisco Uribe

Eric Brosha

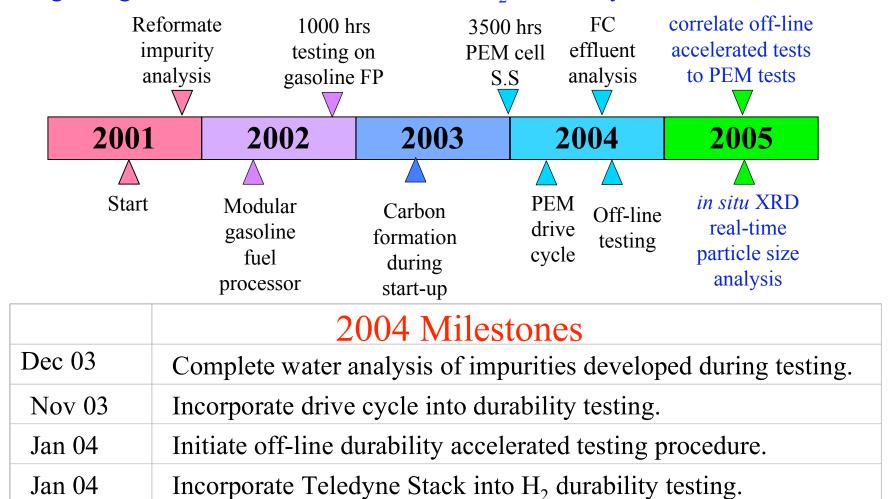
FY2004: Funding: \$900k

This presentation does not contain any proprietary or confidential information.

Technical Objectives:

Quantify and Improve PEM Fuel Cell Durability

- Identify and quantify factors that limit PEMFC Durability
 - Measure property changes in fuel cell components during long term testing
 - Membrane-electrode durability
 - Electrocatalyst activity and stability
 - Gas diffusion media hydrophobicity
 - Bipolar plate materials and corrosion products
 - Develop and apply methods for accelerated and off-line testing
- Improve durability
- Component Technical Barriers Addressed:
 - Durability (Barrier P)
 - Electrode Performance (Barrier Q)
 - Stack Material & Manufacturing Cost (Barrier O)
- DOE Technical Target for Fuel Cell Stack System (2010)
 - Durability 5000 hours
 - Precious metal loading (0.2 g/rated kW)
 - Survivability (includes thermal cycling and realistic driving cycles)


Approach to Durability Studies

- PEM fuel cell durability testing
 - 5 cm², 50 cm² and full size active area (200 cm²) / 12 cell stack
 - Testing: simulated vehicle drive cycle and steady-state testing
 - VIR / cell impedance
 - catalyst active area
 - effluent water analysis
- in situ and post-characterization of membranes, catalysts, GLDs
 - SEM/EDAX / XRF / XRD / TEM / ICP-MS / neutron scattering / H₂ adsorption
- Develop and test with off-line and accelerated testing techniques
 - Potential sweep methods
 - Environmental/leachate chamber
 - Corrosion tests

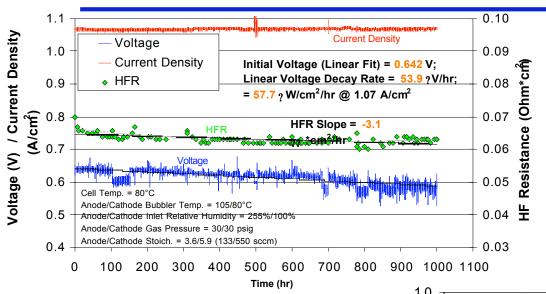
Fuel Cell Durability Testing Timeline

Project initiated in 2001 as Fuel Cell Stack Durability on Gasoline Reformate Beginning FY2004 concentration on PEM H₂ Durability

Response to Reviewer Comments at 2003 DOE Review Meeting

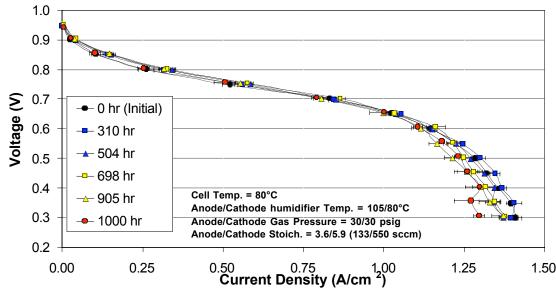
Stack Durability on Hydrogen and Reformate and Testing of Fuels in Fuel Cell Reformers

2003 presentation concentrated on Fuel Effects on Fuel Reforming, so most comments not applicable


- Redirected to work on H₂ PEM durability

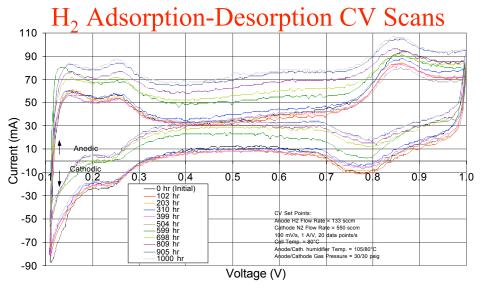
Reviewer comments relevant after redirection:

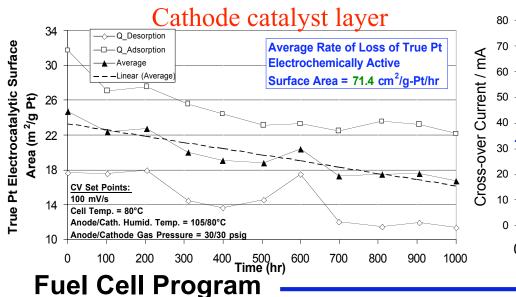
- The durability objective of this project is very important and I hope it will be actively addressed.
- I especially like the proposal of operating the system in a duty cycle operating mode.
- Introduction of drive cycle dynamics and start-up for next year is a plus ...
- Need more fundamental work.



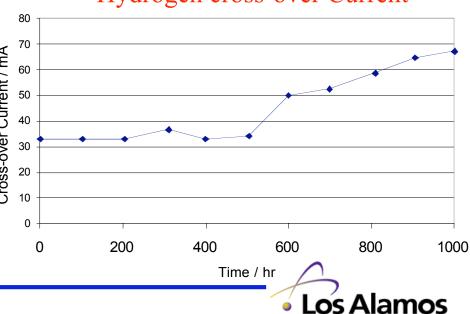
1000 hr Steady-State Test (5 cm²)

Constant current
Temperature = $80 \, ^{\circ}\text{C}$ MEA geometric active area = $5.0 \, \text{cm}^2$ Anode catalyst: $20\% \, \text{Pt/C}$ Cathode catalyst: $20\% \, \text{Pt}_3\text{Cr/C}$ Loadings of $0.20 \pm 0.01 \, \text{mg Pt/cm}^2$ N112 membrane.

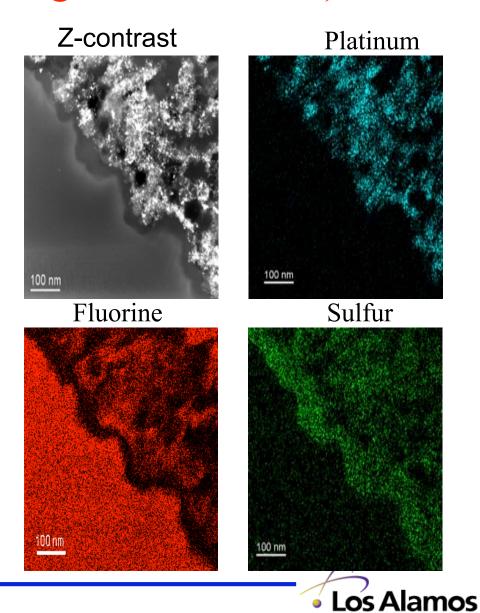

Comparison of Polarization Data During MEA 1000hr Durability Test



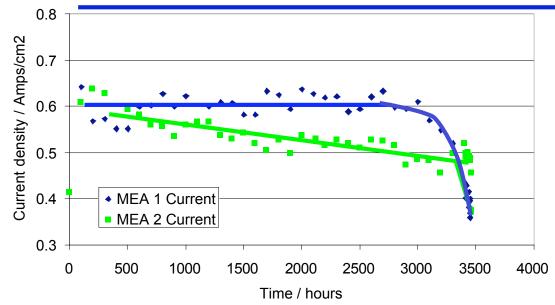
Los Alamos


Analysis of Steady-State 1000-hr Test

- During 1000-hr steady-state constant current durability test
 - Catalyst surface area decreases
 - Hydrogen cross-over increases



Hydrogen cross-over Current



X-ray Maps of Tested MEA (Cathode) (Steady State Testing for ~ 1000 hrs)

- After life test, a layer approximately 50-100nm thick develops at the interface of membrane and cathode catalyst layer
- This layer is enriched in S and depleted in F with respect to the rest of the membrane
- The fresh MEA had a uniform S and F composition across the membrane/anode interface

3500 hrs Life Tests (50 cm²)

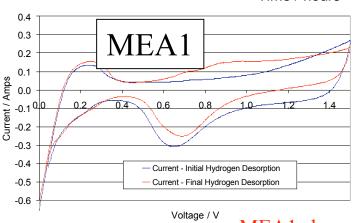
Constant Voltage: 0.6 V

Pt/Pt: 0.2 mg/cm2

N112

Cell Temp. = 80° C

Anode/Cath Humid. Temp = 105/80 °C


Anode/Cath Gas Press. = 15/15 psig

MEA1 Degradation:

 $\sim 0 \text{ microamps / hr - (for 3000 hrs)}$

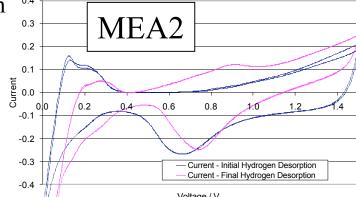
4000 MEA2 Degradation:

 $\sim 2 \text{ microamps / hr - (for 3000 hrs)}$

Surface area Reduction

MEA1:

Anode: 0%


Cathode: 14%

MEA2

Anode: 75%

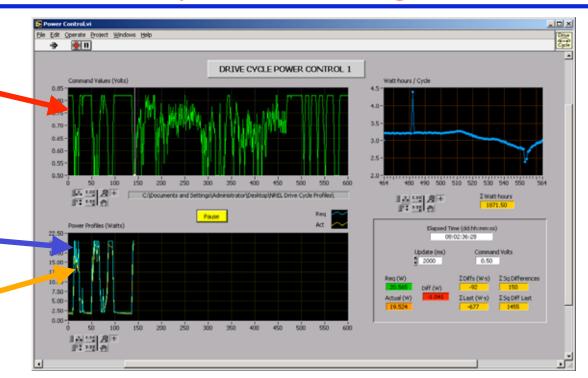
Cathode: 86 %

Particle size same

MEA1 shows little/no performance degradation (till crossover starts)

MEA2 shows gradual performance degradation

Fuel Cell Program cross-over developed in both MEAs at about 3000 hours

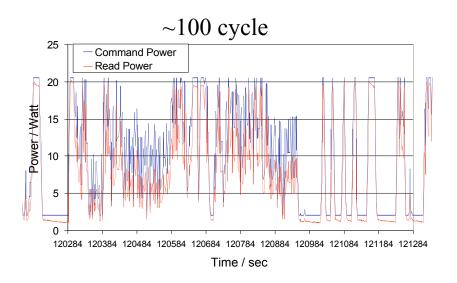

Fuel Cell Drive Cycle Testing

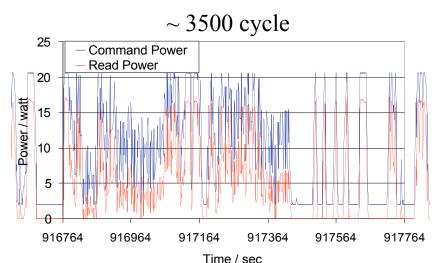
Voltage control profile: Volt vs. Time (sec)

Power control profile and

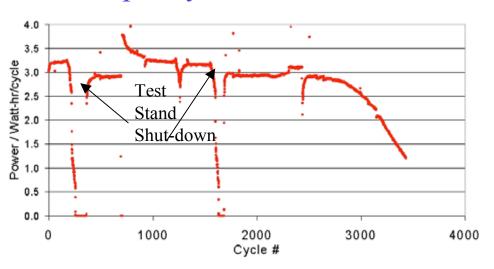
Power response profile

Watts vs. Time (sec)




1 cycle occurs over 20 minutes

- Drive cycle 'controls' power
 - Uses fuel cell VIR to calculate voltage for a power level
 - Actively controls voltage to get power from VIR
- Current hardware with Labview control
 - 50 cm² single cell, Pt/Pt: 0.2 mg/cm^2 , N112, Cell Temp. = 80° C
 - constant humidification and constant anode/cathode flowrates


Initial/Final Drive Cycle Comparison

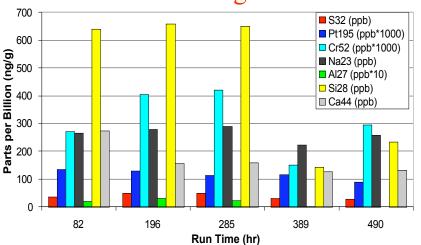
Blue is Control Power Cycle Red is MEA Power Response

Power per cycle over 1200 hrs

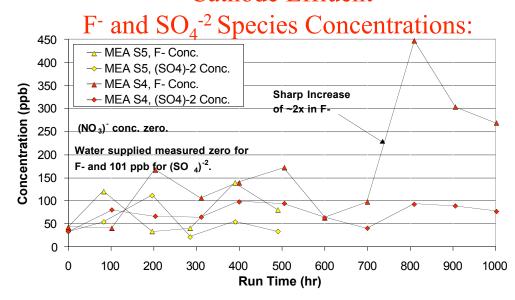
Reduction in H₂ adsorption after testing:

Anode: 31%

Cathode: 57%



Fuel Cell Water Effluent Analysis


(S.S. constant current testing / Pt/PtCr 5 cm²)

ICP-MS Analysis of Cathode Outlet Water through ~500 hr

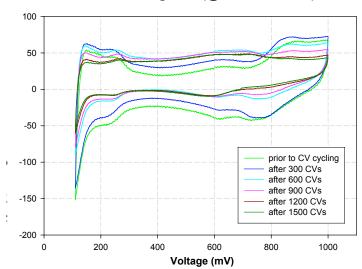
Cathode Outlet Effluent pH 6.5 6.0 5.5 4.5 Blank Blank 102 203 310 399 504 599 698 809 905 1000 Cell Run Time (hr) @ 1.07 A/cm 2

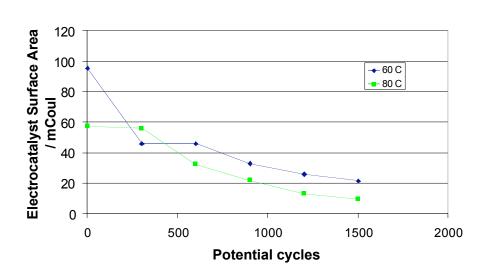
Cathode Effluent

Change in concentration of fluoride (F-) and sulfate (SO_4^{-2}) anions

Sharp increase in F- may coincide with crossover formation

Change in pH also corresponds with increased crossover

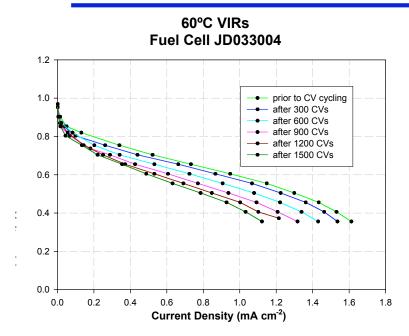



Off-line Testing: MEA Potential Cycling

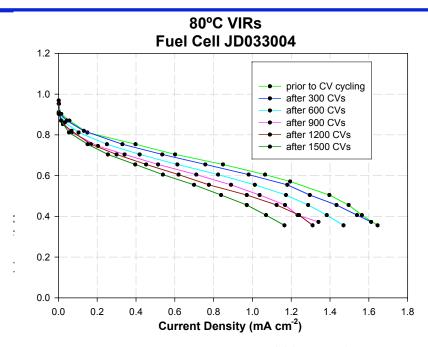
•Obtain predictive, accelerated life test of PEMFC MEA, electrocatalysts.

Within several hundred potential cycles of the MEA electrode, electrocatalyst surface area is decreased, as is MEA performance

Characterizing CVs (@ 100 mV sec⁻¹)



- Voltage cycling 0.1 V to 1.0, 1.2 V
- $T_{cell} = 80 \text{ } \circ \text{C}$
- Anode humidifier = 105 °C
- Cathode humidifier = 80 °C


Potential Cycling of MEAs

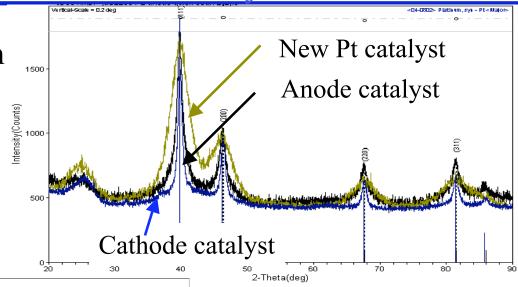
XRD: Pt crystallite size

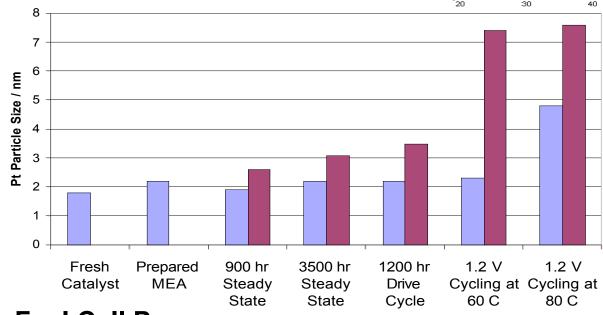
ANODE: 2.3 nm

CATHODE: 7.4 nm

XRD: Pt crystallite size

ANODE: 4.8 nm


CATHODE: 7.6 nm



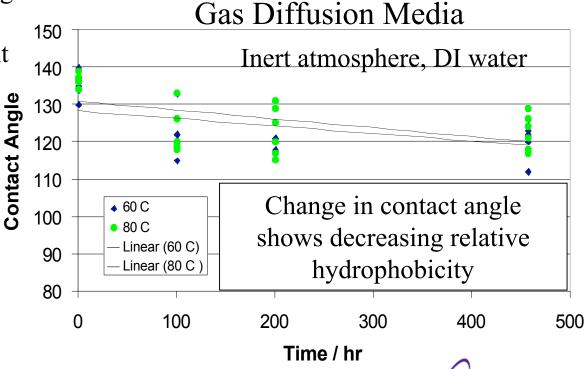
Electrocatalyst Size Growth

XRD analysis of electrocatalysts

- Electrocatalyst particle growth
 - •Z with time
 - •Z with drive cycle
 - •Z with potential cycling
 - •Z Temperature

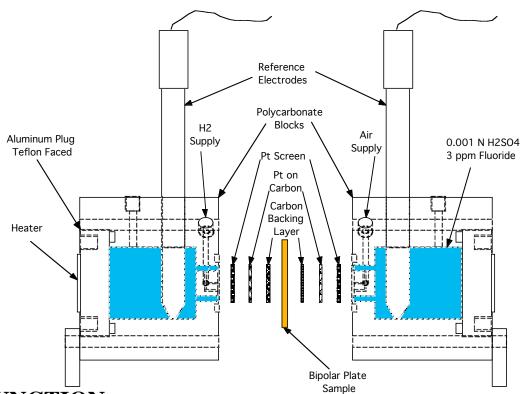
Off-line Testing:

Enviromental / Leachate Chamber


- Isolation of components and separation of degradation effects
 - GDL, MEA, bipolar plates, gaskets, electrocatalysts
- Obtain predictive, accelerated life test for prospective individual components.
- Correlate PEMFC effluent water with components found in the off-line testing

• Simulate PEMFC operating conditions

• Temperature


• Chemical environment

Fuel Cell Program

Bipolar Plate Corrosion Test Cell

FUNCTION

- Simulates the bipolar plate environment (Temperature, anode and cathode potentials and acidity)
- Provides in-situ indication of contact resistance changes arising from corrosion film growth
- Electrolyte samples indicate production of soluble ions.

STATUS

- Developed in 1999 to
 2000 with DOE funding
- Patented in 2002
- Tested candidate bipolar plate materials for Mike Brady (ORNL)
- Loaned, licensed cells to Ballard (2001 to 2003).
- Technology available for licensing

Interactions/Collaborations

- National Technical Presentations/Publications
 - Fuel Cell Seminar, ECS, JECS submission
- Fuel Cell Materials
 - MEAs (3M, Gore, LANL)
 - GDLs (Spectracorp, Toray, SGL, ETEK)
- Stack: Teledyne Energy Systems
- Characterization
 - ORNL (Douglas Blom and Karren More)
 - UNM (Plamen Atanassov)
 - LANL NMT Division (Dave Wayne), C Division (Pat Martinez),
 LANSCE (Jaroslaw Majewski)
- Drive Cycle NREL (Tony Markel)

Project Safety

Management Safety Controls:

Hazard Control Plan (HCP) - Hazard based safety review

Integrated Work Document (IWD) - Task based safety review

Integrated Safety Management (ISM)

Define work → Analyze Hazards → Develop Controls → Perform Work → Ensure Performance

Engineering Controls:

Hydrogen and carbon monoxide room sensors

Electrically and computer interlocked with the test stand power, the gas supplies

H₂ sets off the CO sensors, (set at 30 ppm)

Limits H₂ far from the explosive limit

Safety Related Lessons

There have been no safety related incidents (& related projects).

Use of gas sensors, test stand interlocks limit hydrogen hazards.

Summary/Findings

- Steady-state and drive cycle testing of MEAs
 - MEA degradation quicker with drive cycle testing compared with S.S. testing
 - H₂ cross-over increases with time for both S.S. and cycling
 - Electrocatalyst active surface area decreases
 - Platinum particle size growth observed
 - higher particle growth with cycling, time
 - Change in conc. of fluoride (F-), sulfate (SO₄-2) anions, pH
 - coincides with increased cross-over ('hole') formation
 - •A layer 50-100nm thick developed at the cathode/membrane interface
 - Layer is enriched in S and depleted in F in comparison to the membrane
- Off-line (accelerated) degradation techniques
 - High catalyst sintering during potential sweeps to high potentials
 - Temperature effect on anode catalyst sintering
 - GDL hydrophocity shows little change in DI water
 - Neutron scattering shows promise for delineating PTFE/Nafion degradation
 - Corrosion cell for bipolar plate testing

Future Plans

Remainder of FY 2004:

- correlate potential cycling tests to drive cycle testing
- correlate increase in F⁻ and SO₄⁻² with cross-over in membrane

FY 2005:

- Membrane / MEA degradation
 - examine Nafion bonding via neutron scattering
 - simulate membrane cross-over by inducing penetrations
- Gas Diffusion Media
 - continue off-line testing determining hydrophobicity degradation
 - determine PTFE/graphite (GDL) bonding interaction changes
- Catalyst Durability / characterization
 - examine some Pt alloys for particle size growth
 - in situ XRD → real-time particle size analysis during simulated fuel cell operation

